当前位置:首页 \ 学术信息

学术报告:Potential Theory of Subordinate Brownian Motions

报告人:宋仁明 教授(美国伊利诺伊大学)
报告题目:Potential Theory of Subordinate Brownian Motions

Abstract: A subordinate Brownian motion can be obtained by replacing the time parameter of a Brownian motion by an independent increasing Levy process(i. e., a subordinator). Subordinate Brownian motions form a large subclass of Levy processes and they are very important in various applications. The generator of of a subordinate Brownian motion is a function
of the Laplacian. In this talk, I will give a survey of some of the recent results in the study of the potential theory of subordinate Brownian motions. In particular, I will present recent results on sharp two-sided estimates on the transition densities of killed subordinate Brownian motions in smooth open sets, or equivalently, sharp two-sided estimates on the Dirichlet heat kernels of the generators of subordinate Brownian motions.

        宋仁明, 教授, 19831986年毕业于河北大学数学系,获得理学学士和硕士学位; 1993年毕业于佛罗里达大学数学系,获得哲学博士学位。1994年到密西根大学数学系任教,此后分别于199720032009获得伊利诺斯大学数学系助理教授、副教授和教授职位。宋仁明教授主要从事随机分析和Markov过程研究,任国际期刊《Journal of Korean Mathematical Society》编辑、《llinois Journal of Mathematics》主编,已发表学术论文百余篇。

Copyright © Hebei University of Technology  津ICP备05003053号 津教备0020号